
8 2 ■ J U L Y 2 0 0 3 W W W . L I N U X J O U R N A L . C O M

Y
ou might want to build custom indices of documents
for many reasons. A widely cited one is to supply
search functionality to a web site, but you also may
want to index your e-mail or technical documents.

Anyone who has looked into implementing such a functionality
has probably found it’s not as easy as it might seem. Various
factors conspire to make searching difficult.

The venerable and indispensable grep and its ilk are effec-
tive for scanning through lines of text. But grep, egrep and
their relations won’t do everything for you. They won’t search
across lines, they won’t show search results in a ranked order
and their linear search algorithms don’t lend themselves to
searching larger volumes of data.

HTML doesn’t help the situation either. Its display-oriented
features, idiosyncratic grammar and bevy of formatting and
entity tags make it fairly difficult to parse correctly.

At the other end of the data storage spectrum is data slotted
into a database. The ubiquitous example is that of the SQL
database, which allows somewhat sophisticated search facilities
but usually is not particularly fast for searching. Some database
engines, notably MySQL 4, address this issue by allowing fast
and ranked searches, but they may not be as customizable as
desired.

In this article, we explore ways to create custom indices
using SWISH-E, Perl and XML on Linux. Through examples,
we show how SWISH-E can be used to build indices of HTML
files, PDF files and man pages.

SWISH-E (simple web indexing system for humans—
enhanced) is a descendant of SWISH, which was created in
1994 by Kevin Hughes. SWISH was transferred in 1996 to the
UC Berkeley Library to fix bugs and add features, and the
result was licensed under the GPL and renamed SWISH-E.
Development continues, spearheaded by current project main-
tainer Bill Moseley and assisted by a team of developers.

Here at SkateboardDirectory.com, we happened upon
SWISH-E when researching indexing toolkits. We found that it
offers a unique combination of features that make it attractive
for our purposes. Not only does SWISH-E offer a fast and
robust toolkit with which to build and query indices, but it is
also well documented, undergoes active development and bug
fixes and includes a Perl interface. We also liked that maintainer
Moseley and other experienced SWISH-E users and developers

are usually prompt when addressing questions and bugs
brought up on the SWISH-E mailing list.

Installing SWISH-E
For our examples, we started with a stock Red Hat 7.3 work-
station with the Software Development bundle of packages
installed. We also tested the examples on a Red Hat 6.2 work-
station and a Debian Woody.

Currently, installing SWISH-E on Red Hat means installing
from source, and the zlib and libxml2 libraries are required to
build SWISH-E fully. If you find you need to install either, you
probably can find packages provided with your distribution.
We also use the xpdf package in our examples, so you may
want to install that now if it isn’t already. Our reference Red
Hat 7.3 workstation setup had all of SWISH-E’s prerequisites
installed.

Here, we describe the use of SWISH-E 2.4, which accord-
ing to the development team, should be released by the time
you read this article. You can fetch and set up SWISH-E with
the following sequence of commands, substituting the current
version for (x.x):

% wget \

http://swish-e.org/Download/swish-e-x.x.tar.gz

% tar zxf swish-e-x.x.tar.gz

% cd swish-e-x.x

% ./configure

% make

% make test

To install the SWISH-E binary, C libraries and man pages
into their default locations in /usr/local, type make install as
root. This installs the SWISH-E executable into /usr/local/bin.
If this directory isn’t in your PATH, either change your appro-
priate dot file to include /usr/local/bin in your PATH, or always
call the swish-e executable by full pathname, like
/usr/local/bin/swish-e.

Now, let’s build and install the SWISH::API Perl module
from the Perl directory in the source. We’ll need it later when
we build a Perl client for our index of man pages. SWISH::API
is set up by the normal Perl module install process:

% cd perl

% perl Makefile.PL

% make

% make test

Then, install the SWISH-E Perl module by typing make
install as root.

Now that SWISH-E and the SWISH::API Perl module are
installed fully, let’s build a simple index of HTML files to test
SWISH-E. For this example, we index the HTML, one-page-
per-section versions of the Linux Documentation Project (LDP)
HOWTOs, which we’ve unpacked into ~/HOWTO-htmls/. The
tarballs of LDP documents used in this article come from
www.tldp.org/docs.html.

Indexing HTML on the Filesystem
The first step in building an index with SWISH-E is writing a
configuration file. Create a directory like ~/indices, cd into it

■ I N D E P T H I N D E X A N Y T H I N G

How to
Index
Anything
You probably have search on your web site, but

how about a search engine for the man pages on

your system or even your mail? Try this simple

indexing package. B Y J O S H R A B I N O W I T Z

and create the file ./howto-html.conf with the following
contents:

howto-html.conf

IndexDir ../HOWTO-htmls/

IndexOnly .html

IndexFile ./howto-html.index

The IndexDir directive specifies the directory in which
SWISH-E should look for files to be indexed. The IndexOnly
directive requests that only files ending in .html be indexed.
Finally, the location of the index to be created is specified with
the IndexFile directive.

Our First Index
Now, let’s build our index of HTML files with the command:

% swish-e -c howto-html.conf

The -c option specifies which SWISH-E configuration file to
use. On an older system, building this index may take a few
minutes or so; on a contemporary one, it should take under a
minute. Figure 1 illustrates the process of indexing HTML files
on the filesystem with SWISH-E.

Searching the Index
Let’s test our first
index by doing a sim-
ple search for HTML
files relevant to the
term NFS. You can
test SWISH-E indices
quickly using the
swish-e executable by
specifying an index
with the -f option,
and the text to be
searched with the

-w option; searches on SWISH-E indices are case-insensitive.
Because we expect a lot of pages (or hits) to include the word
NFS, we use the -m 3 option to request only three:

% swish-e -f howto-html.index -m 3 -w nfs

This returns (abridged and reformatted):

1000 ../HOWTO-htmls/NFS-HOWTO/performance.html

"Optimizing NFS Performance" 33288

998 ../HOWTO-htmls/NFS-HOWTO/intro.html

"Introduction" 10966

993 ../HOWTO-htmls/NFS-HOWTO/security.html

"Security and NFS" 35968

W W W . L I N U X J O U R N A L . C O M J U L Y 2 0 0 3 ■ 8 3

HTML

Files

SWISH-E

CONFIG

FILE

SWISH-E

SWISH-E

INDEX

Figure 1. Indexing HTML on the Filesystem with

SWISH-E

Not bad—those pages are definitely about NFS, and the output
is intuitive. The first column is the rank SWISH-E gives each
hit—the hits considered most relevant always are ranked 1000,
with less-relevant files ranked in descending order. The second
column shows the name of the file, the third gives the page’s
title and the fourth shows the byte count of the indexed data.
SWISH-E determines the title of each page from the HTML
tags in each file using one of its HTML parsing engines.
The built-in SWISH-E parsing engines are called TXT, HTML
and XML, and each is designed to parse the corresponding
type of content. Recent versions of SWISH-E also can use the
libxml2 library for the HTML2 and XML2 parsing back ends.
Both the XML2 and HTML2 parsers are preferable to their
built-in counterparts—especially HTML2. This is why a recent
version of libxml2, though technically optional when building
SWISH-E, probably should be considered a prerequisite.

Basic SWISH-E Search Syntax
SWISH-E supports a full-featured text retrieval search lan-
guage with syntax including AND, OR, NOT and parenthetic
grouping that all work predictably. For example, the following
searches all have the expected semantics:

% swish-e -f howto-html.index -w nfs AND tcp

% swish-e -f howto-html.index -w nfs OR tcp

% swish-e -f howto-html.index \

-w ´(gandalf OR frodo) OR (lord AND rings)´

The Configuration File
SWISH-E configuration files are simple text files in which each
line is either a directive or a comment. Any line in which the
first non-whitespace character is a # is ignored by SWISH-E as
a comment. All other non-empty lines should be in the form:

Directive Options [Options] ...

If you need to specify an option with spaces embedded, you
can use quotation marks:

Directive "Option With Spaces!"

If the option has single quotation marks within it, you can
quote it with the double quote character and vice versa, for
example:

Directive "Fred´s Index Option"

Directive ´By Josh "joshr" Rabinowitz´

Dozens of directives can be applied to SWISH-E configuration
files. An exhaustive reference can be found in the SWISH-E
documentation.

The Index
Each SWISH-E index is stored in a pair of files. One is named
as specified in the IndexFile directive, and the other is called
indexname.prop. When talking about a SWISH-E index, we
mean this pair of files.

The indices can get large. In our example index of HTML
files, the index occupies about 11MB, about one-fourth the size
of the original files indexed.

Indexing PDF Files
Up to now, we’ve
talked only about
indexing HTML,
XML and text files.
Here’s a more-
advanced example:
indexing PDF docu-
ments from the Linux
Documentation
Project.

For SWISH-E to
index arbitrary files,
PDF or otherwise,
we must convert the
files to text, ideally
resembling HTML or XML, and arrange to have SWISH-E
index the results.

We could index the PDF files by converting each to a corre-
sponding file on disk and then index those, but instead we’ll
use this opportunity to introduce a more flexible way to index
data: SWISH-E’s programmatic access method (Figure 2).

To index the PDF files, start by creating a SWISH-E con-
figuration file, calling it howto-pdf.conf and endowing it with
the following contents:

howto-pdf.conf

IndexDir ./howto-pdf-prog.pl

prog file to hand us XML docs

IndexFile ./howto-pdf.index

Index to create.

UseStemming yes

MetaNames swishtitle swishdocpath

Here, the IndexDir directive specifies what SWISH-E calls an
external program that will return data about what is to be
indexed, instead of a directory containing all the files. The
UseStemming yes directive requests SWISH-E to stem words
to their root forms before indexing and searching. Without
stemming, searching for the word “runs” on a document con-
taining the word “running” will not match. With stemming,
SWISH-E recognizes that “runs” and “running” both have the
same root, or stem word, and finds the document relevant.

Last in our configuration file, but certainly not least, is the
MetaNames directive. This line adds a special ability to our index—
the ability to search on only the titles or filenames of the files.

Now, let’s write the external program to return information
about the PDF files we’re indexing. Conveniently, the SWISH-E
source ships with an example module, pdf2xml.pm, which
uses the xpdf package to convert PDF to XML, prefixed with
appropriate headers for SWISH-E. We use this module, copied
to ~/indices, in our external program howto-pdf-prog.pl:

#!/usr/bin/perl -w

use pdf2xml;

my @files =

`find ../HOWTO-pdfs/ -name ´*.pdf´ -print`;

for (@files) {

chomp();

my $xml_record_ref = pdf2xml($_);

8 4 ■ J U L Y 2 0 0 3 W W W . L I N U X J O U R N A L . C O M

■ I N D E P T H I N D E X A N Y T H I N G

PDF

Files

MAN

Pages

Custom

Translation

Program

SWISH-E

SWISH-E

INDEX

or

SWISH-E

CONFIG

FILE

Figure 2. Indexing Arbitrary Data with an External

Program and SWISH-E

this is one XML file with a SWISH-E header

print $$xml_record_ref;

}

Equipped with the SWISH-E configuration file and the
external program above, let’s build the index:

% swish-e -c howto-pdf.conf -S prog

The -S prog option tells SWISH-E to consider the IndexDir
specified as a program that returns information about the data
to be indexed. If you forget to include -S prog when using an
external program with SWISH-E, you’ll be indexing the exter-
nal program itself, not the documents it describes.

When the PDF index is built, we can perform searches:

% swish-e -f howto-pdf.index -m 2 -w boot disk

8 6 ■ J U L Y 2 0 0 3 W W W . L I N U X J O U R N A L . C O M

■ I N D E P T H I N D E X A N Y T H I N G

Listing 1. sman-index-prog.pl converts man pages to XML for indexing.

#!/usr/bin/perl -w

use strict;

use File::Find;

my ($cnt, @files) = (0, get_man_files());

warn scalar @files, " man pages to index...\n";

for my $f (@files) {

warn "processing $cnt\n" unless ++$cnt % 20;

my ($hashref) = parse_man($f);

my $xml = make_xml($hashref);

my $size = length $xml; # NOTE: Fails if UTF

print "Path-Name: $f\n",

"Document-Type: XML*\n",

"Content-Length: $size\n\n", $xml;

}

sub get_man_files { # get english manfiles

my @files;

chomp(my $man_path = $ENV{MANPATH} ||

`manpath` || ´/usr/share/man´);

find(sub {

my $n = $File::Find::name;

push @files, $n

if -f $n && $n =~ m!man/man.*\.!

}, split /:/, $man_path);

return @files;

}

sub make_xml { # output xml version of hash

my ($metas) = @_; # escapes vals as side-effect

my $xml = join ("\n",

map { "<$_>" . escape($metas->{$_}) . "</$_>" }

keys %$metas);

my $pre = qq{<?xml version="1.0"?>\n};

return qq{$pre<all>$xml</all>\n};

}

sub escape { # modifies scalar you pass!

return "" unless defined($_[0]);

s/&/&/g, s/</</g, s/>/>/g for $_[0];

return $_[0];

}

sub parse_man { # this is the bulk

my ($file) = @_;

my ($manpage, $cur_content) = (´´, ´´);

my ($cur_section,%h) = qw(NOSECTION);

open FH, "man $file | col -b |"

or die "Failed to run man: $!";

my ($line1, $lineM) = (scalar(<FH>) || "", "");

while (<FH>) { # parse manpage into sections

$line1 = $_ if $line1 =~ /^\s*$/;

$manpage .= $lineM = $_ unless /^\s*$/;

if (s/^(\w(\s|\w)+)// || s/^\s*(NAME)/$1/i){

chomp(my $sec = $1); # section title

$h{$cur_section} .= $cur_content;

$cur_content = "";

$cur_section = $sec; # new section name

}

$cur_content .= $_ unless /^\s*$/;

}

$h{$cur_section} .= $cur_content;

examine NAME, HEADer, FOOTer, (and

maybe the filename too).

close(FH) or die "Failed close on pipe to man";

@h{qw(A_AHEAD A_BFOOT)} = ($line1, $lineM);

my ($mn, $ms, $md) = ("","","","");

NAME mn, DESCRIPTION md, & SECTION ms

for(sort keys(%h)) { # A_AHEAD & A_BFOOT first

my ($k, $v) = ($_, $h{$_}); # copy key&val

if (/^A_(AHEAD|BFOOT)$/) { #get sec or cmd

look for the ´section´ in ()´s

if ($v =~ /\(([^)]+)\)\s*$/) {$ms||= $1;}

} elsif($k =~ s/^\s*(NOSECTION|NAME)\s*//) {

my $namestr = $v || $k; # ´cmd - a desc´

if ($namestr =~ /(\S.*)\s+--?\s*(.*)/) {

$mn ||= $1 || "";

$md ||= $2 || "";

} else { # that regex could fail.

$md ||= $namestr || $v;

}

}

}

if (!$ms && $file =~ m!/man/man([^/]*)/!) {

$ms = $1; # get sec from path if not found

}

($mn = $file) =~ s!(^.*/)|(\.gz$)!! unless $mn;

my %metas;

@metas{qw(swishtitle sec desc page)} =

($mn, $ms, $md, $manpage);

return (\%metas); # return ref to 5-key hash.

}

We should get results similar to:

1000 ../HOWTO-pdfs/Bootdisk-HOWTO.pdf

"Bootdisk-HOWTO.pdf" 127194

983 ../HOWTO-pdfs/Large-Disk-HOWTO.pdf

"Large-Disk-HOWTO.pdf" 85280

The MetaNames directive also lets us search on the titles
and paths of the PDF files:

% swish-e -f howto-pdf.index -w swishtitle=apache

% swish-e -f howto-pdf.index -w swishdocpath=linux

All corresponding combinations of searches are supported. For
example:

% swish-e -f howto-pdf.index -w ´(larry and wall)

OR (swishdocpath=linux OR swishtitle=kernel)´

The quoting above is necessary to protect the parentheses from
interpretation by the shell.

Indexing Man Pages
For our final example, we show how to make a useful and
powerful index of man pages and how to use the SWISH::API
Perl module to write a searching client for the index. Again,
first write the configuration file:

sman-index.conf

IndexFile ./sman.index

Index to create.

IndexDir ./sman-index-prog.pl

IndexComments no

don´t index text in comments

UseStemming yes

MetaNames swishtitle desc sec

PropertyNames desc sec

We’ve described most of these directives already, but we’re
defining some new MetaNames and introducing something
called PropertyNames.

In a nutshell, MetaNames are what SWISH-E actually
searches on. The default MetaName is swishdefault, and
that’s what is searched on when no MetaName is specified
in a query. PropertyNames are fields that can be returned
describing hits.

SWISH-E results normally are returned with several
Auto Properties including swishtitle, swishdesc, swishrank
and swishdocpath. The MetaNames directive in our config-
uration specifies that we want to be able to search indepen-
dently not only on each whole document, but also on only
the title, the description or the section. The PropertyNames
line specifies that we want the sec and desc properties, the
man page’s section and short description, to be returned
separately with each hit.

W W W . L I N U X J O U R N A L . C O M J U L Y 2 0 0 3 ■ 8 7

The work of converting the man pages to XML and wrap-
ping it in headers for SWISH-E is performed in Listing 1
(sman-index-prog.pl).

The first for loop in Listing 1 is the main loop of the pro-
gram. It looks at each man page, parses it as needed, converts it
to XML and wraps it in the appropriate headers for SWISH-E:

■ get_man_file() uses File::Find to traverse the man directo-
ries to find man page source files.

■ make_xml() and escape() together create XML from the
hashref returned by parse_man().

■ parse_man() performs the nitty-gritty work of getting the
relevant fields from the man page source.

Now that we’ve explained it, let’s use it:

% swish-e -c sman-index.conf -S prog

When that’s done, you can test the index as before, using
swish-e’s -w option.

As our final example, we discuss a Perl script that uses
SWISH::API to use the index we just built to provide an
improved version of the UNIX standby apropos. The code is
included in Listing 2 (sman). Here’s a brief rundown: lines
1–14 set things up and parse command-line options, lines
15–23 issue the query and do cursory error handling and lines
24–39 present the search results using Properties returned
through the SWISH::API.

The Perl client is that simple. Let’s use ours to issue searches
on our man pages such as:

% ./sman -m 1 boot disk

We should get back:

bootparam (7) Introduction to boot time para...

But we now also can do searches like:

% ./sman sec=3 perl

to limit searches to section 3. The sman program also accepts
the command-line option --max=# to specify the maximum
number of hits returned, --file to show the source file of the
man page and --rank to show each hit’s rank for the given
query:

% ./sman --max=1 --file --rank boot

This returns:

1000 lilo.conf (5) configuration file for lilo

/usr/man/man5/lilo.conf.5

Notice the rank as the first column and the source file as the
last one.

An enhanced version of the sman package will be available
at joshr.com/src/sman/.

Conclusion
SWISH-E has two downsides we should mention. First, it’s
not multibyte safe—it handles only 8-bit ASCII data.
Second, records cannot be deleted from a SWISH-E
index—to remove records, an index must be re-created. On
the plus side, SWISH-E has numerous features we didn’t
even get to mention. See the SWISH-E web site at
www.swish-e.org for more details. We hope you’ll agree
that SWISH-E is an impressive toolkit and a useful addition
to your programming toolbelt.L

JJoosshh RRaabbiinnoowwiittzz is a 13-year veteran of the software
industry who cut his teeth at NASA Ames Research
Center and at CNET.com and other web companies.
He currently is an independent consultant and the
publisher of SkateboardDirectory.com, which aims
to be your guide to skateboard sites on the Internet.

8 8 ■ J U L Y 2 0 0 3 W W W . L I N U X J O U R N A L . C O M

■ I N D E P T H I N D E X A N Y T H I N G

Listing 2. sman is a command-line utility to search man pages.

#!/usr/bin/perl -w

use strict;

use Getopt::Long qw(GetOptions);

use SWISH::API;

my ($max,$rankshow,$fileshow,$cnt) = (20,0,0,0);

my $index = "./sman.index";

GetOptions("max=i" => \$max,

"index=s" => \$index,

"rank" => \$rankshow,

"file" => \$fileshow,

);

my $query = join(" ", @ARGV);

my $handle = SWISH::API->new($index);

my $results = $handle->Query($query);

if ($results->Hits() <= 0) {

warn "No Results for ´$query´.\n";

}

if (my $error = $handle->Error()) {

warn "Error: ", $handle->ErrorString(), "\n";

}

while (($cnt++ < $max) &&

(my $res = $results->NextResult)) {

printf "%4d ", $res->Property("swishrank")

if $rankshow;

my $title = $res->Property("swishtitle");

if (my $cmd = $res->Property("cmd")) {

$title .= " [$cmd]";

}

printf "%-25s (%s) %-30s", $title,

$res->Property("sec"),

$res->Property("desc");

printf " %s", $res->Property("swishdocpath")

if $fileshow;

print "\n";

}

